A "combination" for a lock with 40 positions consists of four settings, and no setting can coincide with the preceding one. How many "combinations" are there? | Numerade (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "mWZ8M4vpvv8dZr8rP8XK7r1uvMIPTcoNI418mXFXcTSKCndXcmCwfbF1FSFBGCGT"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "mWZ8M4vpvv8dZr8rP8XK7r1uvMIPTcoNI418mXFXcTSKCndXcmCwfbF1FSFBGCGT"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "mWZ8M4vpvv8dZr8rP8XK7r1uvMIPTcoNI418mXFXcTSKCndXcmCwfbF1FSFBGCGT", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    A "combination" for a lock with 40 positions consists of four settings, and no setting can coincide with the preceding one. How many "combinations" are there? | Numerade (2024)

    FAQs

    How many combinations does a 40 number lock have? ›

    The lock in the challenge requires that you choose from 40 different numbers, three different times. Therefore, there are 40 × 40 × 40, or 64,000 different combinations.

    How many 4 digit combinations with 4 numbers? ›

    10 ⋅ 10 ⋅ 10 ⋅ 10 = 10 4 = 10 , 000 .

    How many possible combinations are there for a 4 digit lock code? ›

    The 4 digit lock has 10,000 combinations. but if you can recall even 1 or 2 digits of your original code, you reduce this down to 1000 or 100 combinations.

    How to calculate how many combinations a lock has? ›

    If you have a 4-digit lock without repeating any numbers, and each digit can be any number from 0 to 9, the number of combinations can be calculated using the permutation formula: [ P(n, r) = \frac{n!} {(n - r)!} ]

    How do you calculate the number of possible combinations? ›

    To calculate combinations, we will use the formula nCr = n! / r! * (n - r)!, where n represents the total number of items, and r represents the number of items being chosen at a time.

    How many combinations are there to choose 3 numbers between 0 40? ›

    Answer and Explanation:

    The calculated number of ways of choosing 3 numbers (in order) from 40 numbers (i.e. between 0 and 39 inclusive) is 59,280. Let say, T = Total number of number = 40. N = Number of numbers to be chosen = 3.

    How many combinations are possible with 4 items? ›

    You multiply these choices together to get your result: 4 x 3 x 2 (x 1) = 24. Combinations and permutations are often confused by students - they are related, but they mean different things and can lead to totally different interpretations of situations and questions.

    What are the chances of guessing a 4 digit code with 4 numbers? ›

    It's very simple. In 4 decimal digits there are 10,000 (0000 to 9999) possible values. The odds of any one of them coming up randomly is one in 10,000. A specific "4 digit number" would have 1/9000 chance, since there are 9000 4 digit numbers (1000-9999).

    How many combinations with 4 numbers are there in 1234? ›

    4 * 3 * 2 * 1 = 24 permutations.

    How many combinations with 4 letters? ›

    Answer and Explanation:

    In general, we use the following formula to calculate nCr. Therefore, to calculate 26C4, we plug 26 in for n and 4 in for r, then simplify. We get that 26C4 = 14,950. So, there are 14,950 possible combinations with 4 letters.

    What is the hardest 4 digit password? ›

    A: The hardest 4-digit password is 8068. It is one of the strongest numeric passwords available. Other commonly used 4-digit passwords are 1234, 0000, and 2580. To create the strongest 4-digit password, experts recommend combining numbers, symbols, and capital letters for a secure password that is difficult to guess.

    How many password combinations are possible with 4 characters? ›

    To find the total number of possible passwords, you simply raise the total number of options for each character (36, since there are 26 letters and 10 numbers) to the power of the number of characters in the password (4). So, the equation would be 36^4. If you compute this, you get a result of 1,679,616.

    How to calculate 4 digit combinations? ›

    A 4 digit PIN number is selected. What is the probability that there are no repeated digits? There are 10 possible values for each digit of the PIN (namely: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), so there are 10 · 10 · 10 · 10 = 104 = 10000 total possible PIN numbers.

    How many ways can four numbers be arranged? ›

    The answer depends on how many of the digits are distinct. For example, four zeros can only be arranged one way while four distinct digits (say 1,2,3,4) can be arranged 4•3•2•1=24 different ways.

    What is the permutation of 4 digits? ›

    Answer and Explanation:

    The number of different permutations, without repetition, of 4 digits, is 24. In general, assuming that repetition is not allowed, the rule we use to determine how many permutations there are of a set of n elements involves factorials.

    How many 6 digit combinations are in 40 numbers? ›

    Answer and Explanation:

    = 40 ⋅ 39 ⋅ 38 ⋅ 37 ⋅ 36 ⋅ 35 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 = 39 ⋅ 38 ⋅ 37 ⋅ 2 ⋅ 35 = 3 , 838 , 380 ways to select the numbers.

    How many combinations would be possible in a masterlock there are three digits each with 40 possible numbers if there were no? ›

    there would be (40*40*40)=64000 combination ways would be possible.

    What is the probability of 6 numbers out of 40? ›

    Since we want to pick the correct six numbers out of 40, there is only one winning combination. So, the probability of picking the correct six numbers out of 40 in the lottery is approximately 0.00000026 or 0.000026%.

    How many combinations with 6 numbers 1-40? ›

    (6 factorial) or 720. Divide 2763633600 by 720 to account for this, to get 3838380.

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Amb. Frankie Simonis

    Last Updated:

    Views: 5377

    Rating: 4.6 / 5 (76 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Amb. Frankie Simonis

    Birthday: 1998-02-19

    Address: 64841 Delmar Isle, North Wiley, OR 74073

    Phone: +17844167847676

    Job: Forward IT Agent

    Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

    Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.